
WHITE PAPER

The importance of volume data
and other application performance and porting
considerations

2020 © Perforic Corporation. All Rights Reserved

Volume data testing does

not need to happen as

frequently as the normal QA

cycle but should be done

prior to going in to

production or releasing the

product.

The importance of volume data

One of the often-overlooked parts of performance testing is testing with
volume data. Volume data typically means loading up the database with a
volume large enough for production. Depending on the type of business,
the data retention rules could require six months to two years of customer
data retention, which means the volume data needed for testing should be
enough to simulate that amount of data.

During development and QA, data volume is not typically of concern.
Most development and QA systems have a small amount of sample data
that is perfectly adequate for functionality testing. However, this often
means that when the database is loaded up with large volumes, there are
issues that crop up which do not during the normal development and QA
cycle. It’s not reasonable to expect development and QA to have gigabytes,
or in some case, terabytes of data storage available. This would make
hardware costs prohibitively expensive for the company. The solution is to
have a separate lab, either in-house or at a third-party, with the amount of
data storage required for volume data testing. Volume data testing does not
need to happen as frequently as the normal QA cycle but should be done
prior to going in to production or releasing the product. To reduce costs, the
data storage could be leased for the period of time needed for volume data
testing. Since this activity is typically relevant toward the end of a release,
the amount of time needed on the leased hardware is limited.
There are tools available that can be used to generate database volume.
Some companies might even want to write their own data generation scripts.
Here are some things to keep in mind, no matter the route taken to generate
data:

- If the data is based on real customer data, the tool should allow for
data obfuscation. Confidentiality of customer information is critical so
customer data should never be used for volume testing. Typically, the
security infrastructure of the volume data environment will not be as rigorous
as a production setup so care should be taken with the kind of data in that
environment. Also, internal employees should not have access to sensitive
customer information and therefore customer data should not be used as is
for testing. A good data obfuscation technique will address these issues

2

Volume data testing can

surface issues entirely

different from functional

testing.

- The amount of data for each table should be representative of the
way data builds up in the real production system. Volume testing requires a
lot of database tuning including the use of proper indexes. If the data is
loaded improperly, a lot of time could be wasted optimizing tables that will
never have that high a volume of data. Conversely, if a table is not loaded
with enough data, it might not show any issues until the database is in
production and volume buildup starts to happen. The best way to gauge
data buildup in different tables is to have a small sample database and go
through a real world use case or scenario while monitoring the amount of
data being written to the tables. Once the pattern of data buildup is
understood for a single user, it can be extrapolated to the real world number
of users.

- Ensure there is no bad data. For instance, if your software is not
expecting a null value in a column and your test data populates that column
with a null, it might throw off your entire use case. A lot of time and effort
might be wasted debugging spurious issues due to the data itself and not
the code logic. The volume of data might also make it difficult to identify and
isolate issues. It is best to make sure there is some validation of the volume
data either during the data load or after by using an intelligent algorithm.

Volume data testing can surface issues entirely different from
functional testing. From performance issues due to a badly tuned database
to application issues like overflowing arrays or inefficient business logic, it is
best to catch these issues in a test system before it affects a production
system with real world users.

The use of a third party lab for performance testing

One of the reasons performance testing is neglected by small to mid-size
companies is the hardware expense. In most cases, a performance lab
requires large disk arrays and high performance machines that are
comparable to production systems. An additional expense to consider is the
load driver software, which for established tools can run into the tens of
thousands of dollars. It’s not feasible to do large-scale performance testing
as part of the initial development cycle due to these expenses. QA testing
with tools like JUnit should be and have been part of the development cycle
for some time. Alas, there is no such easy solution for performance testing.
However, there is an answer: third-party lab testing. The needs of
performance testing are such that they are well suited to a third-party lab.

3

With a third party lab, a

company does not have to

worry about long turnaround

times associated with

buying hardware and setting

it up and often not buying

enough or buying too much.

Firstly, hardware in an external lab can be leased. There is no need to buy
expensive hardware that would sit idle for extended periods of time during
the early part of a development cycle when functionality is more the focus
than performance. With the advent of the cloud, its easy to lease this
hardware and quickly add or remove hardware during the performance
testing cycle. This flexibility is key as its often difficult to guess how a
system would perform during early performance testing. If a certain tier
turns out to be a bottleneck, its easy to add more horsepower to that tier in a
hosted lab. With a third party lab, a company does not have to worry about
long turnaround times associated with buying hardware and setting it up and
often not buying enough or buying too much.

Secondly, performance testing should be attempted once the product
is fully functional and has gone through a few rounds of QA and is stable.
Its not as iterative as a development/QA cycle where functional issues are
uncovered and fixed and tested again. You will want to do performance
testing a month to a few months before going live, depending on the
complexity of the product. There needs to be planning for a few regression
cycles to make sure fixes applied to issues uncovered during performance
testing do not cause other problems. However, a lot of issues addressed
during performance testing are environmental, so they might not need code
fixes and might not need as iterative a testing cycle as QA. A useful rule of
thumb is that performance testing typically takes a quarter to an eighth the
time of a QA cycle. Given this, it does not make sense to have expensive
performance testing hardware sitting idle during the bulk of the development
cycle.

Thirdly, a competent performance testing team can operate in
isolation of the QA/development teams. They can tune the environment
without having to consult with the core development/QA teams and can
pinpoint software issues with concrete recommendations to the product
team on how to fix them. Given the relatively high degree of freedom of this
type of testing, having an independent or separate lab allows the testing to
be done without involving core teams that are tasked with new development
or bug fixes and have limited resources to dedicate to performance testing.

4

If you are trying to sell your

product to a company that

does not run the hardware

you support, your chances

of a successful outcome are

greatly reduced.

Some of the keys to successfully test in a third-party lab are:

- Clear understanding of functional flows needing to be tested
- Availability of good analytical tools and knowledge of the

performance team in using them
- Clear understanding of the targets to be met as part of performance

testing. This type of testing can be a never-ending process as performance
can always be improved given enough time. Its important to know when the
targets have been met. These targets are often called KPIs (Key
Performance Indicators) and could be things like numbers of concurrent
users with maximum latency for any given page, maximum network
throughput for a given number of users, minimum numbers of rows to be
updated in a key database table per second or the maximum amount of
memory growth for a process. The KPI depends on what is important for
the product so that the end user does not face any performance issues.

- Good relationship with the third party lab and understanding of
Service Level Agreements (SLAs) so that new hardware can be quickly
added or removed and downtime is minimized

Reasons to port

Portability is the ability of code to run on different platforms or
technologies. Portable code is a fairly broad term and could encompass a
wide variety of technologies from browsers to databases to operating
systems to application servers. Unfortunately, portability is something that
does not happen automatically as part of software development but needs
to be consciously planned for. Before we get into more details on portability,
the obvious question is why, that is, why do we need to bother with portable
code? There are many reasons, including

- Broadening your reach – Many companies build relationships with
hardware vendors and get discounted hardware or other perks in buying
from them. In other cases, companies have messianic zeal about one
platform or the other, as most people who have sat in on technical sales
meetings will tell you. If you are trying to sell your product to a company
that does not run the hardware you support, your chances of a successful
outcome are greatly reduced. A company will not go out and buy hardware
just to be able to run your software. They run into support and training
issues on top of the obvious cost issue. You need to be able to support their
platform.

5

A portable product is

typically a standards

compliant product.

- Sales appeal – If you are trying to market your company for sale to
another company that either has its own brand of hardware or supports a
certain brand, you need to be able to support that same stack (stack is the
term used for the combination of hardware and software including web
servers, application servers, databases and operating systems). Being able
to support multiple platforms increase your chances of being snapped up

- Changing alliances – Today, large software vendors try to own the
stack. In other words, they like to have all components in the stack be
developed in house. They see this as an advantage to their customers as it
gives the customer “one throat to choke”. This also means that customers
are more likely to make changes to their environment based on the
companies they are dealing with. For example, if they already have a
relationship with a large database vendor and now that vendor offers their
own application server, the customer could decide to change from their
current application server to the one offered by the database vendor. If your
product is in the mix, having it be quickly functional on the new stack could
make the difference between a continued relationship with your client and a
lost one.

- Compliance with standards – A portable product is typically a
standards compliant product. Standards like J2EE and ANSI are designed
to make portable development easier. Adhering to these standards means
less risk of your product breaking when a newer version of your currently
supported platform comes along. Platforms, such as application server
containers, need to be standards compliant and if your product is in
compliance, it makes upgrades easier for you and your clients.

Of course, portable development has its challenges, so you need to do the
cost benefit analysis to see if it is worthwhile in your case. If you want to go
with only the most popular platform for a given tier, that is your choice. As
operating systems like Linux have become more and more popular, its
sometimes an easy choice to only code for the most popular platforms.
However, as with most things, one size does not fit all and if you do need to
worry about portability, here are some things to plan for and keep in mind:

6

Use a type of source code

model that easily allows

platform independent and

platform dependent

components to be identified.

- Builds – Builds, by definition, have to be platform dependent, as
they need to compile the code differently, sometimes using native compilers,
based on the operating system. Use a portable build script like Ant which is
an open source tool. This will shield most of your development staff from
operating system oddities and you will only require a small staff of cross
platform build experts to keep the builds running on all the operating
systems you support

- Install and Packaging – Use a cross platform install tool so that you
can have one set of documentation for all your different environments and
one packaging/install vendor to deal with

- Source code – Use a type of source code model that easily allows
platform independent and platform dependent components to be identified.
A technique like source code layering or reuse layering allows this. Most
code will be platform independent but the platform dependent parts of the
code will have their own buckets for easy maintenance.

- Application servers – Languages like Java were developed to allow
code to run in containers that shielded them from the native operating
system. If you are using J2EE, Sun’s site has tools available to ensure
compliance with the standards. All J2EE application servers comply with
these standards though each might have platform specific features for better
performance. The balance here is between having completely cross
platform code or having some platform specific features to enhance
performance on that platform. This is a common dilemma and there is no
easy solution other than strict source code control and clear understanding
and maintenance of cross platform vs platform specific code (minimizing the
latter as much as possible)

- Operating systems – If your product runs on an application server
and does not need to access the native operating system directly, you are
mostly shielded from operating system dependencies. If however, you do
have operating system level dependencies, it is very hard to make the code
be cross platform. There are very few standards between operating
systems, so its difficult to apply the WORA (write once run anywhere)
paradigm here. You need to put the platform specific code in clearly marked
sections as described above in the ‘Source code’ bullet

- Databases – Adherence to ANSI SQL standards and staying away
from stored procedures are the basic tenets to database platform
independence. However, stored procedures are a powerful tool and can
often give degrees of magnitude better performance than dynamic SQL.
There are also potential security issues with dynamic SQL that are not there
in stored procedures. Again, the issue is one of a balance between
maintenance on one side and performance and security on the other, and its
up to the development team to figure out where that line lies.

- Browsers – Use the minimum functionality to be able to do your
design. In other words, stay away from the latest thing out there as it might
not have been tested across browsers. Also, run tools like html validators
and browser compatibility checkers to catch problems early.

7

The best strategy for cross

platform testing is to identify

a primary platform and focus

most of the testing on that

platform.

The above steps are a good way to ensure compatibility and portability
across platforms, but there is no substitute for testing. Its easy to see how
quickly your test matrix can expand as you add more platforms and the
permutation of different platforms pile up. Its essential to plan enough
testing cycles for the various platform combinations. There are often
platform specific issues uncovered during testing that require either a
platform specific fix to the source code or a fix to the platform itself.

The best strategy for cross platform testing is to identify a primary
platform and focus most of the testing on that platform. If your code is fairly
portable, this will solve most of the issues on all platforms. The primary
platform selected should be the platform most of your customers use.
However, there will be a set of issues that are unique to secondary
platforms, hopefully a much smaller set than the issues uncovered during
the primary platform testing. For this reason, secondary platform testing
should not be ignored. Secondary platform testing should be treated like
performance testing (see article ‘The use of a third party lab for performance
testing’ above). It should be done toward the end of the development
lifecycle and can even be handed off to a third party company or team to run
in an external lab. Portability testing, much like performance testing, is not
closely tied to core development/QA, and a good porting team can not only
do the testing but also make specific recommendations to the product team
on how to fix porting issues.

8

Summary

One of the biggest concerns for any business and IT organization is

uptime. Application performance can impact revenues, customer satis-

faction, employee productivity, data center efficiency and software and

hardware licensing costs. There are several ways to manage applica-

tion performance including performance testing, benchmarking, capacity

planning and performance monitoring. These services are available both

on-premise and as hosted service offerings and can help you ensure

the health and the performance of your enterprise applications both

before you launch and while in production. Organizations of all sizes

should consider these services when application uptime is critical to

business productivity.

About Perforic
Perforic provides flexible, high quality and cost-effective enterprise application
porting and performance testing services for software product companies and
internal development organizations. Our team consists of seasoned veterans with
vast experience in performance and porting issues. We have worked with
companies of all sizes – from startups to Fortune 500 companies - and have
deep expertise in J2EE, .NET and database technologies in highly scalable,
three-tier enterprise application environments. The company is based in
Cambridge, MA and has 24 x 7 operations with locations and resources in the US
and Asia. For more information, please visit http://www.perforic.com/index.html.

Perforic LLC
955 Massachusetts Avenue, #309
Cambridge, MA 02139
info@perforic.com

2020 © Perforic Corporation. All Rights Reserved

